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Searching for New Physics with 
Deep Autoencoders



Mass Reach vs How Special New Physics IsExpected Physics

…

In particular, many are motivated by 
the naturalness problem.

We have considered many possibilities of 
BSM physics with top-down theory prejudice.

Our candidates are :
Supersymmetry, Composite Higgs, 
Extra dimension, …

Higgs



Mass Reach vs How Special New Physics IsStatus of Searches
However…

All the searches for new physics in the 
expected places have turned up empty.



Unexpected Physics

Machine Learning can help !

We may need to prepare well for unexpected physics.

Can we find new physics without knowing 
what we’re looking for ??



✓ Learn from labeled data.

✓ Learn from unlabeled data.

Machine learning algorithms can be classified into :

✓Machine looks for 
patterns and extracts 
features in data.

ML Algorithms

•Supervised learning

•Unsupervised learning

✓Machine can answer if new 
data is an apple or not.



✓ Learn from unlabeled data.

✓Machine looks for 
patterns and extracts 
features in data.

Search for Unexpected

•Unsupervised learning

Unsupervised learning comes into play !

We don’t know what we’re looking for and cannot attach 
a label to new physics.

Apple



Autoencoder is an unsupervised learning algorithm that 
maps an input to a latent compressed representation 
and then back to itself.

The Keras Blog

Latent space

Autoencoder

By learning how to reproduce original input, autoencoder 
extracts features of input data.

Compression Decompression 



Anomaly Detection
Autoencoder learns to map background events back to 
themselves.

Autoencoder fails to reconstruct anomalous events that 
it has never encountered.

Signal the existence of anomaly !

Learn features of 
background events



The idea is general, but concentrate on detection of 
anomalous jets as the first baby step.

Top jets
Gluino jets

Our examples of anomalies :

Anomalous Jet Detection



Merge requirement : the partonic daughters of heavy resonance

                                 is within the fat jet, 

Generate jet samples by using PYTHIA for hadronization 
and Delphes for detector simulation. 

We use sample sizes of 100k events for training and testing.

(The performance seems to saturate.)

ΔR < 0.6

Background : QCD jets

Signal jets: top jets, RPV gluino jets
(decay to 3 light quark jets)

pT ∈[800,  900] GeV η <1

m !g = 400 GeV

ΔR < 0.6Match requirement : heavy resonance is within the fat jet, 

Sample Generation



Focus on jet images (2D of eta and phi) as inputs to 
autoencoder.

Jet Images

✓ Pixelation is provided by calorimeter towers.

✓ Pixel intensity is pT recorded by each tower.



To improve performance…

1. Shift an image so that the centroid is at the origin 

Image pre-processing

2. Rotate the image so that the major principal axis is vertical

3. Flip the image so that the maximum intensity is in the upper right region

4. Normalize the image to unit total intensity 

5. Pixelate the image :

Figure 2: The average of 100k jet images drawn from the CMS sample (37 ⇥ 37 pixels spanning

�⌘ = �� = 3.2). The grayscale intensity corresponds to the total pT in each pixel. Upper: no

preprocessing besides centering. Lower: with full preprocessing. Left: top jets. Right: QCD jets

top jets. After our preprocessing steps, the 3-prong substructure of the top jets becomes

readily apparent, while the QCD jets remain more dipole-like. (This should be contrasted

with the average images in the DeepTop paper, where the 3-prong substructure of the

top jets is much less apparent.)

5 Other improvements

5.1 Sample size

In the DeepTop paper, the training samples were limited to 150k+150k. Here we explore

the e↵ect on our CNN top tagger of increasing the training sample size. Shown in fig. 3

are the learning curves for the test accuracy vs. training sample size, for our two di↵erent

jet samples. (The training sample size is defined to be the number of top jets in the

training sample; an equal number of QCD jets were used. The test sample size was fixed

at 400k+400k jets.) We have shifted the learning curve for the DeepTop sample by a

13

Average images

Left : top jets
Right : QCD jets

Macaluso, Shih (2018)

Δη = Δφ = 3.2  ( 37 x 37 pixels )

Jet Images



Reconstruction error :  a measure for how well autoencoder

                                            reproduce the original input.

x
x̂

: inputs

: outputs

Train autoencoder to minimize 
reconstruction error on background events.

Reconstruction Error



✓ Simple (dense) autoencoder

✓ Convolutional autoencoder

We consider the following 
architectures : 

Our Autoencoders

✓ Principal Component Analysis 
    (PCA)



PCA is a technique to drop the least important variables 
by focusing on variance of data.

“PCA autoencoder”

Eigenvectors of covariance matrix of xn − c0 give desired axes. (c0 = xn / Nn∑ )

d : the number of principal components ( d < D )Γ = (e1  e2  ...  ed )

Original data First PC Reconstruction

“Encoder” “Decoder”

“Encoder” : “Decoder” :!xn = (xn − c0 )Γ ′xn = !xnΓ
T + c0

Find the axis 
and project 
data to the axis

Principal Component Analysis



✓ Flatten a jet image into a single column vector for input.

Autoencoder with a single dense (fully-connected) layer 
as encoder and as decoder.

✓ Encoder and decoder are symmetric (weights are not the same).

✓ The number of neurons in a hidden layer = 32.

Venelin Valkov

Simple Autoencoder



Convolutional Neural Network (CNN)                          
✓ Show high performance for image recognitions 

✓ Maintain the spacial information of images

Max pooling
Weights Feature maps

Convolutional layer
Reduce the image size4 ×1+ 9 × 0 + 2 × (−1)

+5 ×1+ 6 × 0 + 2 × (−1)
+2 ×1+ 4 × 0 + 5 × (−1) = 2

Up sampling (pooling) 
also exists in autoencoder.

arXiv:1712.01670

Convolutional Autoencoder



128C3-MP2-128C3-MP2-128C3-32N-6N-32N-12800N-128C3-US2-128C3-
US2-1C3

128C3 : 128 filters with

              a 3x3 kernel

MP2 : max pooling with

          a 2x2 reduction factor

32N : a fully-connected layer

         with 32 neurons

Autoencoder architecture :

US2 : up sampling with

          a 2x2 expansion factor

Encoder Latent space Decoder
M. Ke, C. Lin, Q. Huang (2017)

Convolutional Autoencoder



Reconstruction error is used as an anomaly threshold.

Weakly-supervised case with pure background events for training.

Autoencoder fails to reconstruct the signals.

Inputs

Outputs

Pixel-wise 
squared error

QCD Top Gluino

More error

Average imagesConvolutional autoencoder

Autoencoder learns to reconstruct the QCD backgrounds.

Reconstruction error

Weakly-supervised mode
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PCA and Dense curves approach jet mass curve, suggesting 
their reconstruction errors are highly correlated with jet mass.

εS =
(Correctly classified into signals)

(Total number of signal jets)

ε B =
(Misclassified into signals)

(Total number of backgrounds)

Smaller εBLarger εB
Larger εS Smaller εS

Top jets Gluino jets

Performance measure :

CNN outperforms the others.

PCA outperforms CNN.

Jet mass as 
anomaly 
threshold

Autoencoder Performance
1/

ε B

εS εS
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Too small k
Too large k

Autoencoder cannot capture all the features.
Autoencoder approaches trivial representation.

Optimizing latent dimension using a specific signal is NOT a good idea.

Instead, we examine PCA eigenvalues or reconstruction error vs latent 
dimension and look at where they are saturated.

Amount of variance (“scree plot”) : Reconstruction error :

We choose 
k = 6. Principal component Latent dimension

Choosing Latent Dimension k



Autoencoder probably learns fundamental jet features.

Evaluate autoencoder (trained on PYTHIA samples) on jet samples 
produced with HERWIG.

Autoencoder really does not learn artifacts special 
to a Monte Carlo?

The differences are small.

Separation between 
background and anomaly 
is preserved.

One possible check :

Comparison of 
reconstruction error 
(top jets, CNN)

Robustness with Other Monte Carlo



Train autoencoder on actual data !

Unsupervised Mode

Actual data may contain some amount of signals.

A much more exciting possibility is…



Autoencoder performance is remarkably stable 
against signal contamination.
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Top jets for anomalous events Reduction is not dramatic !

Train autoencoder on a sample of backgrounds 
contaminated by a small fraction of signal events.

Contamination ratio Contamination ratio
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Unsupervised Mode

: the signal efficiency at 90% and 99% background rejectionE10, 100



Unsupervised Mode
Autoencoder learns to preferentially reconstruct 
backgrounds and still poorly reconstructs signals.

Autoencoder could be trained directly on data and then 
could potentially discover anomalies in backgrounds.



In actual new physics searches, we look for subtle signals…

It’s more powerful to combine autoencoder with another variable 
such as jet mass.

Reconstruction error should not be correlated with jet mass.

Cut hard on reconstruction error to clean out the QCD background 
and look for a bump in jet mass distribution.

Correlation with Jet Mass
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• Mean jet mass in bins of reco error 
for the QCD background

✓ For PCA and dense, reco error 
is correlated with jet mass.

✓ Jet mass distribution is stable 
against cutting on CNN loss.

Correlation with Jet Mass

• Jet mass distributions after cuts on CNN loss

Reduce the QCD background by 
a factor of 10, 100 and 1000.

Convolutional autoencoder is useful for 
a bump hunt in jet mass above 300 GeV.



Jet mass histograms 
(normalized to LO gluino and QCD cross sections)

Before the cut After the cut

S / B ≈ 4% S / B ≈ 25%

Bump Hunt
Thresholding on reconstruction error gives 
a significant improvement of S/B.

One could plausibly discover new physics this way !



✓ Autoencoder learns to map background events back to themselves 
but fails to reconstruct signals that it has never encountered before.

✓ Reconstruction error is used as an anomaly threshold.

✓ Autoencoder performance is stable against signal contamination

which enables us to train autoencoder on actual data.

✓ Jet mass distribution is stable against cutting on CNN loss and 
convolutional autoencoder is useful for a bump hunt in jet mass.

✓ Thresholding on reco error gives a significant improvement of S/B.

Summary

Thank you.


