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Searching for New Physics with
Deep Autoencoders

Yuichiro Nakai ( Rutgers — TDLI)

Based on M. Farina, YN and D. Shih, arXiv:1808.08992 [hep-ph].



Expected Physics

We have considered many possibilities of
BSM physics with top-down theory prejudice.

In particular, many are motivated by
the naturalness problem.

Our candidates are :

Supersymmetry, Composite Higgs,
Extra dimension, ...




Status of Searches

However...

CMS

CMS

July 2018

Overview of SUSY results: gluino pair production

July 2018

Overview of SUSY results: squark pair production

36 fb™! (13 TeV)

ATLAS SUSY Searches* - 95% CL Lower Limits
July 2018

Model
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Mass limit

Vs=7,8TeV  ys=13TeV

ATLAS Preliminary

\Vs=7,8,13TeV
Reference

2-6 jets
1-3 jets

Yes
Yes

Yes

36.1
36.1

36.1

1.55 m(E7)<100 GeV
m(g)-m(F})=5GeV

2.0 m(¥})<200 GeV

0.95-1.6 m(E})=900 GeV

1712.02332
1711.03301

1712.02332
1712.02332

S i ool /e, ek 0 2 Yes 361 |& 0.85 m(7%)=0 GeV 1805.01649
i 0.46 m(#, ,&)-m(¥})=50GeV 1805.01649
0 mono-jet  Yes 36.1 7 0.43 m(f,,&)-m(¥})=5GeV 1711.03301
b, h—h +h 1-2ep 4b Yes 361 |& 0.32-0.88 m(¥})=0 GeV, m(f,)-m(¥})= 180 GeV 1706.03986
YK via wz 2-3e.u - Yes  36.1 )‘(z /)?; 0.6 m(¥)=0 1403.5294, 1806.02293
ee, up >1 Yes 361 |X;/%, 017 m(¥;)-m(E})=10 GeV 1712.08119
XE00 via Wh Llilyyltbb Yes 203 | /% 0.26 m(¥)=0 1501.07110
5 A RS, X —tv(en), Ba—tr(r) 27 Yes 361 | H/ 0.76 m(¥1)=0, m(7,7)=0.6(m(¥1)+m(¥})) 1708.07875
E 2 XilXy 0.22 m(¥T)-m(E7)=100 GeV, m(#, #)=0.5(m(¥; )+m(¥})) 1708.07875
O frlig, 00 2e.p 0 Yes 361 |7 05 mer)=0 1803.02762
2epu >1 Yes 361 |7 0.18 m(?)-m(¥))=5 GeV 1712.08119
HHA, H-hG[ZG 0 >3b Yes 361 |#@ 0.13-0.23 0.29-0.88 BR(Y| — hG)=1 1806.04030
depu 0 Yes 361 |& 0.3 BR(Y) — ZG)=1 1804.03602
Direct ¥{ ] prod., long-lived ¥ Disapp. trk 1 jet Yes 361 | X 0.46 Pure Wino 1712.02118
Dy X 015 Pure Higgsino ATL-PHYS-PUB-2017-019
2o N .
= § Stable g R-hadron SMP - - 3.2 g 1.6 1606.05129
25 Metastable  R-hadron, §—gqi} Multiple 328 [& E@=tons,020s) 16 24 m(F})=100 GeV 1710.04901,1604.04520
S 2 GMSB, ¥2—G, long-lived ° 2y Yes 203 | 0.44 1<2(i)<3 ns, SPS8 model 1409.5542
23, )Z?ﬁeev/e,uv/,u,uv displ. ee/ep/up - 20.3 3 13 6 <ct(¥])< 1000 mm, m(¥})=1 TeV 1504.05162
LFV pp—¥ + X, V. —ep/et/ut ep,eT,UT - 3.2 Vr 1.9 A31,=0.11, A132/133233=0.07 1607.08079
T 1 — wwyzectevy 4ep 0 Yes  36.1 m(E))=100 GeV 1804.03602
88 8-4a¥1, X - gqq 0 4-5large-Rjets - 36.1 Large 4}, 1804.03568
E Multiple 36.1 m(¥})=200 GeV, bino-like ATLAS-CONF-2018-003
O 33,5 — ths /g1y, ) - ths Multiple 36.1 m(E})=200 GeV, bino-like ATLAS-CONF-2018-003
if, ik, XY = ths Multiple 36.1 mE¥%)=200 GeV, bino-like ATLAS-CONF-2018-003
ff, fi—obs 0 2jets+2b - 36.7 1710.07171
fi, fi—-bl 2e,pu 2b - 36.1 7 0.4-1.45 BR(#, —~be/bu)>20% 1710.05544

*Only a selection of the available mass limits on new states or
phenomena is shown. Many of the limits are based on
simplified models, c.f. refs. for the assumptions made.

Mass scale [TeV]

dr + qr(,d, & 3)

1400

e i (I
x = 0.5
= 20 GeV
BF = 50%
1750 2000

Ps unless stated otherwise.
between the intermediate



Unexpected Physics

A

UNEXPECTED RD

Can we find new physics without knowing
what we’re looking for ??
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ML Algorithms

Machine learning algorithms can be classified into :

Known Data

¢ Supervised learning o .j
v Learn from labeled data. - fe= ape
v Machine can answer if new peponse

data is an apple or not.
sople %>

® Unsupervised learning

v Learn from unlabeled data.

v Machine looks for
patterns and extracts
features in data.

(e



Search for Unexpected

We don’t know what we’re looking for and cannot attach
a label to new physics.

Apple

Unsupervised learning comes into play !

® Unsupervised learning

v Learn from unlabeled data.

‘@
v Machine looks for Q ‘ -
patterns and extracts ((‘(Q g
features in data. gt Data o




Autoencoder is an unsupervised learning algorithm that
maps an input to a latent compressed representation

and then back to itself.

Latent space

l

—> Encoder —>E—> Decoder —>

Original ] '
g Compression Decompression s con i 2

input ,
input
Compressed
representation The Keras Blog

By learning how to reproduce original input, autoencoder
extracts features of input data.




Anomaly Detection

Autoencoder learns to map background events back to

themselves.

Learn features of
background events
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Autoencoder

High error

Reconstruct m Low error

Autoencoder fails to reconstruct anomalous events that
It has never encountered.

=» Signal the existence of anomaly !




Anomalous Jet Detection

The idea is general, but concentrate on detection of

anomalous jets as the first baby step.

Autoencoder

Reconstruct

: : ” High error

Our examples of anomalies :

Top jets
Gluino jets




Sample Generation

Generate jet samples by using PYTHIA for hadronization
and Delphes for detector simulation.

Background : QCD jets  p, €[800, 900] GeV |n| <1

Signal jets: top jets, RPV gluino jets m, =400 GeV

(decay to 3 light quark jets)

Match requirement : heavy resonance is within the fat jet, AR <0.6

Merge requirement : the partonic daughters of heavy resonance
is within the fat jet, AR < 0.6

We use sample sizes of 100k events for training and testing.
(The performance seems to saturate.)



Jet Images

Focus on jet images (2D of eta and phi) as inputs to

autoencoder.

\\ﬁ!ﬂ !,,’!l:

Boosted W -+ qQ’

G 12
o 3
o 1 =
\ Véﬁ/ g .
. © o)
Calorimeter V Jet § 05k &
proton-proton E. _ LI _5 10
) 5 | _
collision into/ ¢ > g - . ]
out-of page A or -
. A —I =
Jet A? -0.5_— .. =1
}M M Figure credit: i - b
I YHHY Y \ - -
‘ “:!2!‘!!!: ; i not to scale B. Nachman r
—l 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 l 1 1 1 1 I 1 1
-1 -0.5 0 0.5 1

[Translated] Pseudorapidity (n)

v Pixelation is provided by calorimeter towers.

v’ Pixel intensity is pT recorded by each tower.




Jet Images

To improve performance...

Image pre-processing —— ‘

1. Shift an image so that the centroid is at the origin ‘

3. Flip the image so that the maximum intensity is in the upper right region

2. Rotate the image so that the major principal axis is vertical

4. Normalize the image to unit total intensity

5. Pixelate the image : An=A@¢=3.2 (37 x37 pixels)

Average images

Left : top jets
Right : QCD jets

Macaluso, Shih (2018)



Reconstruction Error

Reconstruction error : a measure for how well autoencoder
reproduce the original input.

L(az, ,’f;) — Z |.’13 — @lz X :inputs

37X 37 pixels X :outputs

Train autoencoder to minimize
reconstruction error on background events.



Our Autoencoders

We consider the following
architectures :

Gene 3

v Principal Component Analysis
(PCA)

v Simple (dense) autoencoder

v’ Convolutional autoencoder




Principal Component Analysis

PCA is a technique to drop the least important variables
by focusing on variance of data.

) ) Original data First PC Reconstruction
Find the axis

and project
data to the axis

Eigenvectors of covariance matrix of X, —¢, (€, = Zn x |/ N) give desired axes.

= I Z(el €, .. ed) d : the number of principal components (d <D )

“PCA autoencoder”

“Encoder”: x =(x, —c,)I “Decoder”: x' =% T" +¢,




Simple Autoencoder

Autoencoder with a single dense (fully-connected) layer
as encoder and as decoder.

v Encoder and decoder are symmetric (weights are not the same).

v The number of neurons in a hidden layer = 32.

v Flatten a jet image into a single column vector for input.

Original
mushroom

Compressed Data
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| Learned
representation

Venelin Valkov



Convolutional Autoencoder

Convolutional Neural Network (CNN) B0 catoen

k (Dog, 0.21)

(Pig, 0.06)

¥ Maintain the spacial information of images convolution pooling  fully-connect =
arXiv:1712.01670

Forele

v Show high performance for image recognitions

Convolutional layer Max pooling
Ax1+9%042x (1) Weights Feature maps Reduce the image size
153 14+6x0+2x (~1) 7 | |
2x1+4X0+5%(=1)=2 Filter 1 Single depth slice
x il 2 | 4 _
Input - - :\na(;(sq:)iglev;lth 2x2 filters 6|8
IIII|IIIII — Output 3|2 B > 3 B
Ts |3 L— T T 1
%71 | 1| 2 S
| X3x 4x4
) L * 3. 3x3 | ;
| Filter 2 ||
8 |-
5 7179|211 B
|| — 4x4x2
5 8 5 3 8 4 — - -
6x6x3 Up sampling (pooling)
1x g also exists in autoencoder.




Convolutional Autoencoder

Autoencoder architecture :

Convolution step (convolution + pooling) Fully connected encoding step Deconvolution step (deconvolution + unpooling)

| |

M. Ke, C. Lin, Q. Huang (2017)

Encoder Latent space Decoder

128C3-MP2-128C3-MP2-128C3-32N-6N-32N-12800N-128C3-US2-128C3-
US2-1C3

128C3 : 128 filters with MP2 : max pooling with
a 3x3 kernel a 2x2 reduction factor

32N : a fully-connected layer US2 : up sampling with
with 32 neurons a 2x2 expansion factor




Weakly-supervised mode

Weakly-supervised case with pure background events for training.

Convolutional autoencoder
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Autoencoder learns to reconstruct the QCD backgrounds. More error

N\

Autoencoder fails to reconstruct the signals.

Reconstruction error is used as an anomaly threshold.



Autoencoder Performance

Performance measure :

QCD
t

§ (400 GeV)
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anomaly PCA and Dense curves approach jet mass curve, suggesting

threshold their reconstruction errors are highly correlated with jet mass.




Choosing Latent Dimension k

Too smallk = Autoencoder cannot capture all the features.

Too large k -} Autoencoder approaches trivial representation.

Optimizing latent dimension using a specific signal is NOT a good idea.

Instead, we examine PCA eigenvalues or reconstruction error vs latent

dimension and look at where they are saturated.

Amount of variance (“scree plot”) : Reconstruction error :
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Robustness with Other Monte Carlo

Autoencoder really does not learn artifacts special
to a Monte Carlo?

One possible check :

Evaluate autoencoder (trained on PYTHIA samples) on_jet samples
produced with HERWIG.

1.2

Comparison of QCD Pythia
= QCD Herwig

reconstruction error 10| __ .o s

(top jets, CNN) 1 t Herwig

0.8

The differences are small. )

Separation between o
background and anomaly 0.2
IS preserved.
0.0 —7 0 —6.5 —6.0 -5.5 -5.0 —-4.5 -4.0

Reconstruction Error

Autoencoder probably learns fundamental jet features.



Unsupervised Mode

A much more exciting possibility is...

Train autoencoder on actual data !
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Unsupervised Mode

rain autoencoder on a sample of backgrounds
contaminated by a small fraction of signal events.

Autoencoder performance is remarkably stable
against signal contamination.

=

E1o, 100 - the signal efficiency at 90% and 99% background rejection

. Reduction is not dramatic !
Top jets for anomalous events

0.75 : :
I Dense 1 0_20; Dense |
i CNN ] CNN A
i ] 0.15] M ]
O© 065- T Q9 ﬁ |
™ [ 1 QO I ]
Ll ' 1 - ' <
0.60| 1 L 010 |
0.55" 0.05" i
osof 000 . . . oo
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10

Contamination ratio Contamination ratio



Unsupervised Mode

Autoencoder learns to preferentially reconstruct
backgrounds and still poorly reconstructs signals.

Autoencoder

Low error

” High error

Reconstruct

-1 & . - ! -

Autoencoder could be trained directly on data and then
could potentially discover anomalies in backgrounds.



Correlation with Jet Mass

In actual new physics searches, we look for subtle signals...

It’s more powerful to combine autoencoder with another variable
such as |et mass.

Cut hard on reconstruction error to clean out the QCD background
and look for a bump in jet mass distribution.

=

Reconstruction error should not be correlated with jet mass.



Correlation with Jet Mass

e Mean jet mass in bins of reco error a00]

for the QCD background

v For PCA and dense, reco error
Is correlated with jet mass.

Mean Jet \lass [GeV]

v Jet mass distribution is stable
against cutting on CNN loss.

Reconstruction Error x 108

¢ Jet mass distributions after cuts on CNN loss

0.0045

2 | g Reduce the QCD background by
a factor of 10, 100 and 1000.

0.0035 L>L1000

0.0030
0.0025
0.0020

Convolutional autoencoder is useful for

0.0010

a bump hunt in jet mass above 300 GeV.

0.0000

0 100 200 300 400 500 600 700
Jet mass [GeV]



Thresholding on reconstruction error gives
a significant improvement of S/B.

Jet mass histograms
(normalized to LO gluino and QCD cross sections)

0.0175 Qco 0.00008 Qcp
9 0.00007 g
0.0150
0.00006
0.0125 Before the cut After the cut
0.00005
0.0100
S/Bz4% * 0.00004 S/BzZS%
0.0075 0.00003
0.0050 0.00002
0.0025 0.00001
0.0000 300 350 400 450 500 550 0.00000 300 350 400 450 500 550
Jet mass [GeV] Jet mass [GeV]

One could plausibly discover new physics this way !



v Autoencoder learns to map background events back to themselves
but fails to reconstruct signals that it has never encountered before.

v Reconstruction error is used as an anomaly threshold.

v Autoencoder performance is stable against signal contamination
which enables us to train autoencoder on actual data.

v Jet mass distribution is stable against cutting on CNN loss and
convolutional autoencoder is useful for a bump hunt in jet mass.

v Thresholding on reco error gives a significant improvement of S/B.

Thank you.



